Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope

نویسندگان

  • Mark C. Strus
  • Camilo I. Cano
  • Cattien V. Nguyen
  • Arvind Raman
چکیده

The future development of polymer composite materials with nanotubes or nanoscale fibers requires the ability to understand and improve the interfacial bonding at the nanotube–polymer matrix interface. In recent work [Strus MC, Zalamea L, Raman A, Pipes RB, Nguyen CV, Stach EA. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett 2008;8(2):544–50], it has been shown that a new mode in the Atomic Force Microscope (AFM), peeling force spectroscopy, can be used to understand the adhesive mechanics of carbon nanotubes peeled from a surface. In the present work, we demonstrate how AFM peeling force spectroscopy can be used to distinguish between elastic and interfacial components during a nanoscale peel test, thus enabling the direct measurement of interfacial energy between an individual nanotube or nanofiber and a given material surface. The proposed method provides a convenient experimental framework to quickly screen different combinations of polymers and functionalized nanotubes for optimal interfacial strength. Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

In situ scanning electron microscope peeling to quantify surface energy between multiwalled carbon nanotubes and graphene.

Understanding atomic interactions between constituents is critical to the design of high-performance nanocomposites. Here, we report an experimental-computational approach to investigate the adhesion energy between as-produced arc discharge multiwalled carbon nanotubes (MWCNTs) and graphene. An in situ scanning electron microscope (SEM) experiment is used to peel MWCNTs from graphene grown on c...

متن کامل

Effect of cantilever nonlinearity in nanoscale tensile testing

Microcantilevers are widely used in micro-/nanoscale mechanics studies. The nonlinear response of a cantilever at large deflection is sometimes overlooked. A general study of cantilever beam nonlinearity under a variety of loading conditions was performed with analytical and finite element analyses. Analytical equations for the applied load and the cantilever deflection were obtained. The canti...

متن کامل

Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes

We demonstrate the controlled and reversible telescopic extension of multiwall carbon nanotubes, thus realizing ultralow-friction nanoscale linear bearings and constant-force nanosprings. Measurements performed in situ on individual custom-engineered nanotubes inside a high-resolution transmission electron microscope demonstrated the anticipated van der Waals energy-based retraction force and e...

متن کامل

Magnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes

Magnetic force microscope ( MFM ) is a powerful technique for mapping the magnetic force gradient above the sample surface. Herein, single-wall carbon nanotubes (SWCNT) were used to fabricate MFM probe by dielectrophoresis method which is a reproducible and cost-effective technique. The effect of induced voltage on the deposition manner of carbon nanotubes (CNT) on the atomic force microscope (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013